Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Curr Oncol ; 31(4): 1994-2023, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668052

RESUMO

Melatonin is a multifunctional hormone regulator that maintains homeostasis through circadian rhythms, and desynchronization of these rhythms can lead to gastrointestinal disorders and increase the risk of cancer. Preliminary clinical studies have shown that exogenous melatonin alleviates the harmful effects of anticancer therapy and improves quality of life, but the results are still inconclusive due to the heterogeneity of the studies. A personalized approach to testing clinical parameters and response to integrative treatment with nontoxic and bioavailable melatonin in patient-centered N-of-1 studies deserves greater attention. This clinical case of colon cancer analyzes and discusses the tumor pathology, the adverse effects of chemotherapy, and the dynamics of markers of inflammation (NLR, LMR, and PLR ratios), tumors (CEA, CA 19-9, and PSA), and hemostasis (D-dimer and activated partial thromboplastin time). The patient took melatonin during and after chemotherapy, nutrients (zinc, selenium, vitamin D, green tea, and taxifolin), and aspirin after chemotherapy. The patient's PSA levels decreased during CT combined with melatonin (19 mg/day), and melatonin normalized inflammatory markers and alleviated symptoms of polyneuropathy but did not help with thrombocytopenia. The results are analyzed and discussed in the context of the literature on oncostatic and systemic effects, alleviating therapy-mediated adverse effects, association with survival, and N-of-1 studies.


Assuntos
Neoplasias do Colo , Melatonina , Humanos , Melatonina/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Oncologia Integrativa/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino
2.
Vet Sci ; 11(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668423

RESUMO

Deoxynivalenol (DON) contamination in feed is a global concern that severely threatens the health of animals and humans. Taxifolin (TA) is a natural flavonoid, a member of the polyphenols, that possesses robust antioxidant properties. This study aimed to investigate the effect of TA on DON-induced damage in porcine intestinal epithelial cells (IPEC-J2). The cells were pre-incubated with a series of concentrations of TA for 24 h and exposed to DON (0.5 µg/mL) for another 24 h. The results showed that pretreatment with TA (150 µM) significantly inhibited the DON-induced decline in cell viability (p < 0.05) and cell proliferation (p < 0.01). Additionally, 150 µM TA also alleviated DON-induced apoptosis (p < 0.01). Moreover, TA decreased the production of reactive oxygen species (ROS) induced by DON (p < 0.01). In addition, TA attenuated DON-induced cell junction damage (p < 0.05). Further experiments showed that TA reversed the DON-induced reduction in antioxidant capacity in the IPEC-J2 cells, probably via activating the Nrf2 signaling pathway (p < 0.05). Collectively, these findings suggest that 150 µM TA can protect against 0.5 µg/mL DON-induced damage to IPEC-J2 cells, potentially via the activation of the Nrf2 signaling pathway. This study provides insight into TA's potential to act as a green feed additive in the pig farming industry and its efficacy in counteracting DON-induced intestinal damage.

3.
Front Neurol ; 15: 1360705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566852

RESUMO

Cases of iatrogenic cerebral amyloid angiopathy (CAA) have been increasingly reported recently, particularly those associated with neurosurgery. Preclinical studies have shown taxifolin to be promising for treating CAA. We describe a young 42-year-old man with a history of childhood traumatic brain injury that required a craniotomy for hematoma evacuation. He later presented with recurrent lobar intracerebral hemorrhage (ICH) decades later, which was histologically confirmed to be CAA. Serial 11C-Pittsburgh compound B positron emission tomography (11C-PiB-PET) imaging showed a 24% decrease in global standardized uptake value ratio (SUVR) at 10 months after taxifolin use. During this period, the patient experienced clinical improvement with improved consciousness and reduced recurrent ICH frequency, which may be partly attributable to the potential amyloid-ß (Aß) clearing the effect of taxifolin. However, this effect seemed to have diminished at 15 months, CAA should be considered in young patients presenting with recurrent lobar ICH with a history of childhood neurosurgery, and serial 11C-PiB-PET scans warrant further validation as a strategy for monitoring treatment response in CAA for candidate Aß-clearing therapeutic agents such as taxifolin.

4.
Reprod Toxicol ; 126: 108585, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574953

RESUMO

Oxidative stress has been implicated in numerous pregnancy-related disorders. Biologically active plant secondary metabolites, which are present in everyday diet, could prove effective therapeutic agents in preventing these disorders. This study evaluated effects of taxifolin (dihydroquercetin) on ROS production, markers of oxidative damage to lipids and proteins, activity of antioxidant enzymes and production of pro-inflammatory cytokines in H2O2-induced oxidative stress in trophoblast HTR-8/SVneo cells. Taxifolin in 10 µM and 100 µM concentrations attenuated oxidative damage to lipids and proteins, as evidenced by a decrease in MDA content, extracellular LDH activity, carbonyl groups and nitrite contents. A reduction in the activity of antioxidant enzymes SOD, CAT and GPx in cells pre-treated with taxifolin, prior to H2O2 exposure, was also observed, along with a reduction in intracellular ROS production. Both evaluated concentrations of taxifolin showed anti-inflammatory activity in trophoblast cells, by reducing production of pro-inflammatory cytokines IL-1ß and IL-6. In this model of H2O2-induced oxidative stress, taxifolin showed marked antioxidative and anti-inflammatory activities in trophoblast cells, adding further evidence of its protective effects and showing potential as a therapeutic agent in preventing adverse pregnancy outcomes.

5.
Front Microbiol ; 15: 1378235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605703

RESUMO

Aromadendrin and taxifolin are two flavanonols (derived from the precursor naringenin) displaying diverse beneficial properties for humans. The carbon skeleton of these flavonoids may be transformed by the human gastrointestinal microbiota into other compounds, like auronols, which exert different and interesting biological activities. While research in flavonoids has become a certainly extensive field, studies about auronols are still scarce. In this work, different versions of the key plant enzyme for flavanonols biosynthesis, The flavanone 3-hydroxylase (F3H), has been screened for selecting the best one for the de novo production of these compounds in the bacterial factory Streptomyces albidoflavus UO-FLAV-004-NAR, a naringenin overproducer strain. This screening has rendered 2.6 µg/L of aromadendrin and 2.1 mg/L of taxifolin final production titers. Finally, the expression of the chalcone isomerase (CHI) from the gut bacterium Eubacterium ramulus has rendered a direct conversion (after feeding experiments) of 38.1% of (+)-aromadendrin into maesopsin and 74.6% of (+)-taxifolin into alphitonin. Moreover, de novo heterologous biosynthesis of 1.9 mg/L of alphitonin was accomplished by means of a co-culture strategy of a taxifolin producer S. albidoflavus and a CHI-expressing Escherichia coli, after the observation of the high instability of alphitonin in the culture medium. This study addresses the significance of culture time optimization and selection of appropriate enzymes depending on the desired final product. To our knowledge, this is the first time that alphitonin de novo production has been accomplished.

6.
Toxicol Mech Methods ; : 1-14, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38465425

RESUMO

Aluminum (Al) overexposure damages various organ systems, especially the nervous system. Regularly administered aluminum chloride (AlCl3) to rats causes dementia and pathophysiological alterations linked to Alzheimer's disease (AD). Taxifolin's neuroprotective effects against AlCl3-induced neurotoxicity in vitro and in vivo studies were studied. Taxifolin (0.1, 0.3, 1, 3, and 10 µM) was tested against AlCl3 (5 mM)-induced neurotoxicity in C6 and SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Additionally, neural morphology was examined by confocal microscopy. Additionally, taxifolin's mode of binding with the co-receptor of toll-like receptor 4 (TLR4), human myeloid differentiation-2 (hMD-2) was investigated. AlCl3 (25 mg/kg/d, i.p.) was administered to rats for 14 d, and from the eighth day, taxifolin (1, 2, and 5 mg/kg/d, i.p.) was given along with AlCl3. This study assessed memory impairment using the Morris water maze, plus maze, and pole tests. This study also performed measurement of oxidant (malondialdehyde [MDA] and nitrite), antioxidant (reduced glutathione), and inflammatory (myeloperoxidase [MPO] activity, TLR4 expression) parameters in rats' brain in addition to histopathology. The docking score for taxifolin with hMD-2 was found to be -4.38 kcal/mol. Taxifolin treatment reduced the neurotoxicity brought on by AlCl3 in both C6 and SH-SY5Y cells. Treatment with 10 µM taxifolin restored AlCl3-induced altered cell morphology. AlCl3 administration caused memory loss, oxidative stress, inflammation (increased MPO activity and TLR4 expression), and brain atrophy. Taxifolin treatment significantly improved the AlCl3-induced memory impairment. Taxifolin treatment also mitigated the histopathological and neurochemical consequences of repeated AlCl3 administration in rats. Thus, taxifolin may protect the brain against AD.

7.
Technol Cancer Res Treat ; 23: 15330338241241245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515396

RESUMO

Background: One of the most significant characteristics of cancer is epithelial-mesenchymal transition and research on the relationship between phenolic compounds and anticancer medications and epithelial-mesenchymal transition is widespread. Methods: In order to investigate the potential effects of Taxifolin on enhancing the effectiveness of Epirubicin in treating breast cancer, specifically in 4T1 cells and an allograft BALB/c model, the effects of Taxifolin and Epirubicin, both individually and in combination, were examined. Cell viability assays and cytotoxicity assays in 4T1 cells were performed. In addition, 4T1 cells were implanted into female BALB/c mice to conduct in vivo studies and evaluate the therapeutic efficacy of Taxifolin and Epirubicin alone or in combination. Tumor volumes and histological analysis were also assessed in mice. To further understand the mechanisms involved, we examined the messenger RNA and protein levels of epithelial-mesenchymal transition-related genes, as well as active Caspase-3/7 levels, using quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assays, respectively. Results: In vitro results demonstrated that the coadministration of Taxifolin and Epirubicin reduced cell viability and cytotoxicity in 4T1 cell lines. In vivo, coadministration of Taxifolin and Epirubicin suppressed tumor growth in BALB/c mice with 4T1 breast cancer cells. Additionally, this combination treatment significantly increased the levels of active caspase-3/7 and downregulated the messenger RNA and protein levels of N-cadherin, ß-catenin, vimentin, snail, and slug, but upregulated the E-cadherin gene. It significantly decreased the messenger RNA levels of the Zeb1 and Zeb2 genes. Conclusion: The in vitro and in vivo results of our study indicate that the concurrent use of Epirubicin with Taxifolin has supportive effects on breast cancer treatment.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Quercetina/análogos & derivados , Feminino , Animais , Camundongos , Epirubicina/farmacologia , Caspase 3 , RNA Mensageiro , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células
8.
Aging (Albany NY) ; 16(3): 2617-2637, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305809

RESUMO

Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor in the pancreas. The incomplete understanding of cancer etiology and pathogenesis, as well as the limitations in early detection and diagnostic methods, have created an urgent need for the discovery of new therapeutic targets and drugs to control this disease. As a result, the current therapeutic options are limited. In this study, the weighted gene co-expression network analysis (WGCNA) method was employed to identify key genes associated with the progression and prognosis of pancreatic adenocarcinoma (PAAD) patients in the Gene Expression Profiling Interactive Analysis (GEPIA) database. To identify small molecule drugs with potential in the treatment of pancreatic adenocarcinoma (PAAD), we compared key genes to the reference dataset in the CMAP database. First, we analyzed the antitumor properties of small molecule drugs using cell counting kit-8 (CCK-8), AO/EB and Transwell assays. Subsequently, we integrated network pharmacology with molecular docking to explore the potential mechanisms of the identified molecules' anti-tumor effects. Our findings indicated that the progression and prognosis of PAAD patients in pancreatic cancer were associated with 11 genes, namely, DKK1, S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6, and MUC16. These genes were filtered based on their therapeutic potential through comparing them with the reference dataset in the CMAP database. Taxifolin, a natural small molecule drug with the potential for treating PAAD, was screened by comparing it with the reference dataset in the CMAP database. Cell-based experiments have validated the potential of Taxifolin to facilitate apoptosis in pancreatic cancer cells while restraining their invasion and metastasis. This outcome is believed to be achieved via the HIF-1 signaling pathway. In conclusion, this study provided a theoretical basis for screening genes related to the progression of pancreatic cancer and discovered potentially active small molecule drugs. The experimental results confirm that Taxifolin has the ability to promote apoptosis in pancreatic cancer cells.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Quercetina/análogos & derivados , Humanos , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Simulação de Acoplamento Molecular , Pâncreas , Perfilação da Expressão Gênica , Apoptose/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana , Receptores de Ácidos Lisofosfatídicos
9.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338420

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of cognitive and neurological problems, including Alzheimer's disease. Taxifolin is a natural phytochemical generally found in yew tree bark and has significant pharmacological properties, such as being anti-cancer, anti-inflammatory, and antioxidant. The binding affinity and inhibitory potency of taxifolin to these enzymes were evaluated through molecular docking and molecular dynamics simulations followed by the MMPBSA approach, and the results were significant. Taxifolin's affinity for binding to the AChE-taxifolin complex was -8.85 kcal/mol, with an inhibition constant of 326.70 nM. It was observed to interact through hydrogen bonds. In contrast, the BChE-taxifolin complex binding energy was observed to be -7.42 kcal/mol, and it was significantly nearly equal to the standard inhibitor donepezil. The molecular dynamics and simulation signified the observed interactions of taxifolin with the studied enzymes. The MMPBSA total free energy of binding for AChE-taxifolin was -24.34 kcal/mol, while BChE-taxifolin was -16.14 kcal/mol. The present research suggests that taxifolin has a strong ability to bind and inhibit AChE and BChE and could be used to manage neuron-associated problems; however, further research is required to explore taxifolin's neurological therapeutic potential using animal models of Alzheimer's disease.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Quercetina/análogos & derivados , Animais , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Int J Biol Macromol ; 263(Pt 1): 130226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368971

RESUMO

With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Quercetina/análogos & derivados , Camundongos , Animais , Quitosana/química , Lipossomos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Álcool de Polivinil/química , Cicatrização , Hidrogéis/química , Inflamação , Autofagia
11.
Food Chem X ; 21: 101092, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38223527

RESUMO

The phenolic profiles, antioxidant capacities, cytoprotective effect, and α-glucosidase and DPP-IV inhibitory capacity of free (FP), esterified (EP) and insoluble-bound (IBP) phenolic fractions in 'Lijiang snow' peach juice after high pressure homogenization (HPH) were investigated, and the molecular docking was used to explore the enzyme inhibition mechanism. HPH increased total phenolic and total flavonoid contents in three fractions without changing compositions. The IC50 of radicals scavenged by three fractions were all reduced by HPH. The best inhibition on intracellular ROS production were found for phenolic fractions after HPH at 300 MPa, with ROS levels ranged within 95.26-119.16 %. HPH at 300 MPa reduced the apoptosis rates of FP and EP by 16.52 % and 9.33 %, respectively. All phenolic fractions showed effective inhibition on α-glucosidase and DPP-IV by formation of hydrogen bonding and van der Waals forces. This study explored the feasibility of HPH to enhance the phenolics and bioactivity of peach juice.

12.
Phytother Res ; 38(1): 156-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846877

RESUMO

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is the main complication secondary to long-term or excessive use of glucocorticoids (GCs). Taxifolin (TAX) is a natural antioxidant with various pharmacological effects, such as antioxidative stress and antiapoptotic properties. The purpose of this study was to explore whether TAX could regulate oxidative stress and apoptosis in GIONFH by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. We conducted qRT-PCR, Western blotting, TUNEL assays, flow cytometry, and other experiments in vitro. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were performed to determine the therapeutic effect of TAX in vivo. TAX mitigated the overexpression of ROS and NOX gene expression induced by DEX, effectively reducing oxidative stress. Additionally, TAX could alleviate DEX-induced osteoblast apoptosis, as evidenced by qRT-PCR, Western blotting, and other experimental techniques. Our in vivo studies further demonstrated that TAX mitigates the progression of GIONFH in rats by combating oxidative stress and apoptosis. Mechanistic exploration revealed that TAX thwarts the progression of GIONFH through the activation of the Nrf2 pathway. Overall, our research herein reports that TAX-mediated Nrf2 activation ameliorates oxidative stress and apoptosis for the treatment of GIONFH.


Assuntos
Glucocorticoides , Osteonecrose , Quercetina/análogos & derivados , Ratos , Animais , Glucocorticoides/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Cabeça do Fêmur/metabolismo , Microtomografia por Raio-X , Estresse Oxidativo , Osteonecrose/induzido quimicamente , Osteonecrose/tratamento farmacológico , Osteonecrose/metabolismo , Apoptose
13.
Phytomedicine ; 123: 155199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995531

RESUMO

BACKGROUND: Metastatic melanoma is a fatal cancer. Despite the advances in targeted therapy and immunotherapy for patients with melanoma, drug resistance and low response rates pose a considerable challenge. Taxifolin is a multifunctional natural compound with emerging antitumor potentials. However, its utility in melanoma treatment remains unclear. PURPOSE: The study aimed to investigate the effect of purified Taxifolin from Larix olgensis roots (Changbai Mountain, China) on melanoma and explore the underlying mechanism. METHODS: Purified Taxifolin from Larix olgensis roots was evaluated for its antimelanoma effects in vitro and in vivo settings. RNA-seq analysis was performed to explore the underlying mechanism. RESULTS: Purified Taxifolin (> 99 %) from Larix olgensis roots inhibited the proliferation and migration of B16F10 melanoma cells at 200 and 400 µM, and of A375 cells at 100 and 200 µM. Taxifolin administered at 60 mg/kg suppressed tumor growth and metastasis in mouse models without causing significant toxicity. Taxifolin modulated USP18/Rac1/JNK/ß-catenin axis to exert its antitumor effect. CONCLUSION: These findings indicate that Taxifolin derived from Larix olgensis roots may be a promising antimelanoma therapy.


Assuntos
Melanoma , Animais , Camundongos , Humanos , Melanoma/tratamento farmacológico , beta Catenina , Quercetina/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Ubiquitina Tiolesterase
14.
Curr Top Med Chem ; 24(3): 201-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38141183

RESUMO

Cordia Dichotoma is a valuable medicinal plant belonging to the family Boraginaceae. It consists of several beneficial secondary metabolite components, including alkaloids, carbohydrates, flavonoids, glycosides, saponins, and tannins. Numerous studies have been conducted to assess the anticancer properties of Cordia Dichotoma on MCF-7, A-549, PC3, and HeLa cancer cell lines, primarily utilizing ethanolic extract, methanolic extract, and chloroform extract. The results of these studies have demonstrated significant effects. Furthermore, several studies have revealed the rich phytoconstituent content of Cordia Dichotoma with some significant components previously utilized by researchers to investigate the anticancer properties of specific compounds. This review discusses several of these components, including ß-sitosterol, α-amyrin, Quercitrin, Robinin, betulin, Taxifolin, and Hesperetin. Additionally, a recent study uncovered that the anticancer effect of metabolites from endophytic fungi residing on the Cordia Dichotoma plant is attributed to a property of the plant itself. This review focuses on the current state of anticancer research related to this plant and its components.


Assuntos
Cordia , Humanos , Cordia/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Fungos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
15.
Heliyon ; 9(11): e22011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053888

RESUMO

The chemotherapeutic agent doxorubicin (Dox) is commonly used to treat various types of cancer, even though it can cause life-threatening cardiotoxicity. Clinically, there is no particularly effective way to treat Dox-induced cardiotoxicity. Therefore, it is imperative to identify compounds that can effectively alleviate Dox-induced cardiotoxicity. Ferroptosis and oxidative stress play a key role in Dox-induced cardiotoxicity, and the inhibition of ferroptosis and oxidative stress could effectively protect against doxorubicin-induced cardiotoxicity. Taxifolin (TAX) is a flavonoid commonly found in onions and citrus fruits. In the present study, we evaluated the effects of TAX on Dox-induced cardiac injury and dysfunction and aimed to explore the mechanisms underlying these effects. Using a mouse model of Dox-induced cardiotoxicity, we administered 20 mg/kg/day of TAX by gavage for 2 weeks. A week after the first use of TAX, each mouse was administered a 10 mg/kg dose of Dox. TAX was first evaluated for its cardioprotective properties, and the outcomes showed that TAX significantly reduced the damage caused by Dox to the myocardium in terms of structural and functional damage by effectively inhibiting ferroptosis and oxidative stress. In vivo, echocardiography, histopathologic assay, serum biochemical analysis and western blotting was used to find the results that Dox promoted ferroptosis-induced cardiomyocyte death, while TAX reversed these effects. In vitro, we also found that TAX alleviated Dox-induced cardiotoxicity by using ROS/DHE staining assay, Cellular immunofluorescence and western blotting. TAX increasing expression of microRNA-200a (miR-200a) which affects ferroptosis by activating Nrf2 signaling pathway. We believe that TAX inhibits ferroptosis and is a potential phytochemical that prevents Dox-induced cardiotoxicity.

16.
Adv Clin Exp Med ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962257

RESUMO

BACKGROUND: Epilepsy is a severe neurological disease that results from excessive and/or synchronized neuronal activity in the brain, and oxidative stress plays a role in its pathogenesis. Taxifolin is a flavonoid that exhibits antioxidant activity. OBJECTIVES: To investigate the effects of taxifolin on caffeine-induced epileptic seizures in rats and reveal the role of antioxidant activity in antiepileptic therapy. MATERIAL AND METHODS: Forty rats were divided into 4 groups (n = 6/group): caffeine 300 mg/kg group (CG), taxifolin 50 mg/kg + caffeine 300 mg/kg group (TCG), 2 mg/kg diazepam + 300 mg/kg caffeine group (DCG), and a healthy group (HG). Taxifolin was given to the TCG, and diazepam was given to the DCG orally. One hour later, caffeine was injected intraperitoneally into the CG, TCG and DCG rats. The time between the caffeine injection and the contractions (the latency period) was determined. Animals were euthanized 1 h after caffeine injection, and brain tissues were biochemically examined for oxidants and antioxidants. RESULTS: Taxifolin and diazepam prolonged the latency period to a similar extent (p = 0.549), while taxifolin was more successful in preventing mortality. Taxifolin suppressed the caffeine-induced increase in myeloperoxidase, total oxidant status and oxidative stress index, and decreased total glutathione, superoxide dismutase and total antioxidant status more effectively than diazepam (p < 0.05). CONCLUSIONS: We showed the relationship between antioxidant activity and epilepsy treatment, and demonstrated that taxifolin may be useful for treating epilepsy.

17.
Microorganisms ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38004664

RESUMO

Among the various mechanisms that bacteria use to develop antibiotic resistance, the multiple expression of ß-lactamases is particularly problematic, threatening public health and increasing patient mortality rates. Even if a combination therapy-in which a ß-lactamase inhibitor is administered together with a ß-lactam antibiotic-has proven effective against serine-ß-lactamases, there are no currently approved metallo-ß-lactamase inhibitors. Herein, we demonstrate that quercetin and its analogs are promising starting points for the further development of safe and effective metallo-ß-lactamase inhibitors. Through a combined computational and in vitro approach, taxifolin was found to inhibit VIM-2 expressing P. aeruginosa cell proliferation at <4 µg/mL as part of a triple combination with amoxicillin and clavulanate. Furthermore, we tested this combination in mice with abrasive skin infections. Together, these results demonstrate that flavonol compounds, such as taxifolin, may be developed into effective metallo-ß-lactamase inhibitors.

18.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894747

RESUMO

During the storage, processing, and digestion of flavonoid-rich foods and beverages, a condensation of flavonoids with toxic carbonyl compounds occurs. The effect of the resulting products on cells remains largely unknown. The aim of the present study was to evaluate the effects of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin, and a condensation product of taxifolin with glyoxylic acid on the oxidative burst of neutrophils. It was found that the flavonoids and the condensation product inhibited the total production of ROS. Flavonoids decreased both the intra and extracellular ROS production. The condensation product had no effect on intracellular ROS production but effectively inhibited the extracellular production of ROS. Thus, the condensation of flavonoids with toxic carbonyl compounds may lead to the formation of compounds exhibiting potent inhibitory effects on the oxidative burst of neutrophils. The data also suggest that, during these reactions, the influence of a fraction of flavonoids and their polyphenolic derivatives on cellular functions may change. On the whole, the results of the study provide a better understanding of the effects of polyphenols on human health. In addition, these results reveal the structure-activity relationship of these polyphenols and may be useful in a search for new therapeutic agents against diseases associated with oxidative stress.


Assuntos
Flavonoides , Quercetina , Humanos , Flavonoides/farmacologia , Quercetina/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Explosão Respiratória , Neutrófilos , Polifenóis/farmacologia
19.
Cancers (Basel) ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37835514

RESUMO

Using an LL2 cell-based syngeneic mouse LC model, taxifolin suppressed allografts along with the appearance of 578 differentially expressed genes (DEGs). These DEGs were associated with enhancement of processes related to the extracellular matrix and lymphocyte chemotaxis as well as the reduction in pathways relevant to cell proliferation. From these DEGs, we formulated 12-gene (TxflSig) and 7-gene (TxflSig1) panels; both predicted response to ICB (immune checkpoint blockade) therapy more effectively in non-small-cell lung cancer (NSCLC) than numerous well-established ICB biomarkers, including PD-L1. In both panels, the mouse counterparts of ITGAL, ITGAX, and TMEM119 genes were downregulated by taxifolin. They were strongly associated with immune suppression in LC, evidenced by their robust correlations with the major immunosuppressive cell types (MDSC, Treg, and macrophage) and multiple immune checkpoints in NSCLC and across multiple human cancer types. ITGAL, ITGAX, and IIT (ITGAL-ITGAX-TMEM119) effectively predicted NSCLC's response to ICB therapy; IIT stratified the mortality risk of NSCLC. The stromal expressions of ITGAL and ITGAX, together with tumor expression of TMEM119 in NSCLC, were demonstrated. Collectively, we report multiple novel ICB biomarkers-TxflSig, TxflSig1, IIT, ITGAL, and ITGAX-and taxifolin-derived attenuation of immunosuppressive activities in NSCLC, suggesting the inclusion of taxifolin in ICB therapies for NSCLC.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37815837

RESUMO

OBJECTIVES: Taxifolin (dihydroquercetin) is a bioactive plant flavonoid that exhibits anti-inflammatory and anti-oxidative properties. We hypothesized that taxifolin might be an effective dietary supplement to ameliorate symptoms arising from thrombo-inflammatory diseases such as lupus and antiphospholipid syndrome (APS). METHODS: We used in vitro assays and a mouse model to determine mechanisms by which taxifolin inhibits neutrophil extracellular trap (NET) formation (i.e., NETosis) and venous thrombosis in lupus and APS. RESULTS: At doses ranging from 0.1 to 1 µg/ml, taxifolin inhibited NETosis from control neutrophils stimulated with autoantibodies isolated from lupus and APS patients, and its suppressive effects were mitigated by blocking the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Furthermore, taxifolin at a dose as low as 20 mg/kg/day reduced in vivo NETosis in thrombo-inflammatory mouse models of lupus and APS while also significantly attenuating autoantibody formation, inflammatory cytokine production, and large-vein thrombosis. CONCLUSION: Our study is the first to demonstrate the protective effects of taxifolin in the context of lupus and APS. Importantly, our study also suggests a therapeutic potential to neutralize neutrophil hyperactivity and NETosis that could have relevance to a variety of thrombo-inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...